AP Physics 1 Summer Assignment

This packet is designed to prepare you for the rigors of Advanced Placement Physics. Because of the amount of material covered, it is necessary that students arrive to class in September with a strong understanding of the relevant algebra/trigonometry skills as well as a base level understanding of units and kinematics.

This packet is meant to be challenging – do your best. I realize that some sections may seem like “busy work” but understand that these concepts will be used extensively throughout the year and this practice will help create a solid foundation for the year. Use the resources located on the assignments page of my PV Bears website to help you with completing the assignments.

http://www.pvbears.org/Page/1014

This will be turned in on the first day of school and will be your first graded assignment. Be sure to follow all directions regarding showing work. A test on these concepts will follow.

I recommend getting started on the assignment immediately. While it should not take you too much time, if any questions or concerns come up it would be helpful to have enough time to email me for clarification. I can be reached at: murphy.patrick@pvbears.org Good luck and have a safe and relaxing summer! Mr. Murphy
Pythagorean Theorem $a^2 + b^2 = c^2$
Solve for the unknown information. Round to the nearest tenth.

1. $a = 9$ $b = 9$ $c = ____$
2. $a = 4$ $b = ____$ $c = 12$
3. $a = 4$ $b = 6$ $c = ____$
4. $a = ____$ $b = 20$ $c = 25$
5. $a = ____$ $b = 10$ $c = 13$

Trigonometry SOH CAH TOA
Solve for the unknown information. Ensure calculator is in degree mode, round to the nearest tenth.

$$\sin \theta = \frac{a}{h} \quad \cos \theta = \frac{a}{h} \quad \tan \theta = \frac{a}{a}$$

1. $\theta = 50^0$ $o = ____$ $a = 10$ $h = ____$
2. $\theta = 60^0$ $o = ____$ $a = ____$ $h = 2$
3. $\theta = 37^0$ $o = 6$ $a = ____$ $h = ____$
4. $\theta = 50^0$ $o = ____$ $a = ____$ $h = 13$
5. $\theta = 53^0$ $o = ____$ $a = 12$ $h = ____$
6. $\theta = 18^0$ $o = ____$ $a = ____$ $h = 10$
7. $\theta = 56^0$ $o = 6$ $a = ____$ $h = ____$
8. $\theta = 21^0$ $o = 9$ $a = ____$ $h = ____$
9. $\theta = 22^0$ $o = ____$ $a = ____$ $h = 10$
10. $\theta = 45^0$ $o = ____$ $a = ____$ $h = 17$
Formula Solving
Rearrange formulas to solve for the specified variable.

Example: \(v = \frac{\Delta x}{\Delta t} \) \quad \Delta x = v \Delta t \quad \Delta t = \frac{\Delta x}{v} \n
1. \(a = \frac{F}{m} \) \quad F = \underline{\ \ \ \ \ \ \ } \quad m = \underline{\ \ \ \ \ \ \ } \n
2. \(v = v_o + a t \) \quad v_o = \underline{\ \ \ \ \ \ } \quad a = \underline{\ \ \ \ \ \ } \quad t = \underline{\ \ \ \ \ \ } \n
3. \(x = x_o + v_o t + \frac{1}{2} a t^2 \) \quad x_o = \underline{\ \ \ \ \ \ } \n
\quad v_o = \underline{\ \ \ \ \ \ } \n
\quad a_o = \underline{\ \ \ \ \ \ } \n
\quad t_o = \underline{\ \ \ \ \ \ } \) (quadratic formula) \n
4. \(v^2 = v_o^2 + 2a(x - x_o) \) \quad v_o = \underline{\ \ \ \ \ \ } \n
\quad a_o = \underline{\ \ \ \ \ \ } \n
\quad x = \underline{\ \ \ \ \ \ } \n
\quad x_o = \underline{\ \ \ \ \ \ } \)
Unit Conversions
Complete the following unit conversions, write your final answer in the blank and show all work.

1. 12.0 miles to feet __________
2. 850 in to meters __________
3. 8.6×10^5 cm to km __________
4. 60 mi/hr to km/hr __________
5. 8.2 m/s to ft/min __________
6. 3.10×10^8 cm to feet __________
7. 45 ft/s to mi/hr __________
8. 6.20×10^4 m to nm __________
9. 290 kg to mg __________
10. 4.0×10^3 cm to nm __________
11. 6.0×10^{-9} m to nm __________
12. 9.0×10^8 ng to g __________
13. 100 mm to cm __________
14. 5.4×10^6 nm to mm __________
15. 65 cm/s to km/hr __________
16. 100 cm/hr to mm/min __________
Significant Figures

Identify the number of significant figures in the following values.

1. _____ 489
2. _____ 4.89
3. _____ 5.390
4. _____ 53.19
5. _____ 3.091
6. _____ 34.10
7. _____ 1.000
8. _____ 3.1x10^{-4}
9. _____ 8.50x10^{12}
10. _____ 3000001
11. _____ 3193.00
12. _____ 12
13. _____ 1.0x10^{6}
14. _____ One dozen
15. _____ 9.800x10^{1}
16. _____ 1000000
17. _____ 1268x10^{-3}
18. _____ 7
19. _____ 3.4x10^{7}
20. _____ 183x10^{5}

Using proper rules for significant figures, complete the following calculations:

21. 8.4 + 3 = _____
22. 11.72 – 9.3 = _____
23. 23 + 5.5 = _____
24. 3.42 – 2 = _____
25. 5.69 + 9.32 = _____
26. 18.4 – 12.96 = _____
27. 3.40 x 2.3 = _____
28. 9.0 x 3.0 = _____
29. 5.0 x 4 = _____
30. 12 x 6.40 = _____
31. 8.4 / 4.2 = _____
32. 1.2 / 0.3 = _____
33. 86 / 3.45 = _____
34. 22.10 / 1.35 = _____
35. 2.3 x 1 / 5.81 = _____

Scientific Notation

Convert the following values into proper scientific notation with the specific number of significant figures.

1. 473 (2 SF) __________
2. 4819 (3 SF) __________
3. 195.8 (4 SF) __________
4. 49101 (2 SF) __________
5. 3810030 (2 SF) __________
6. 0.00490 (2 SF) __________
7. 0.0190 (2 SF) __________
8. 0.000058 (2 SF) __________
9. 935.0x10^{2} (4 SF) __________
10. 183x10^{5} (3 SF) __________
11. 50 (2 SF) __________
12. 0.1341 (2 SF) __________
13. 6000 (1 SF) __________
14. 4.382 (4 SF) __________

Convert the following values into decimal form.

15. 8.340x10^{5} __________
16. 3.8x10^{2} __________
17. 6.290x10^{-4} __________
18. 1x10^{4} __________
19. 5.90x10^{-2} __________
20. 8.4x10^{3} __________
21. 9.040x10^{1} __________
22. 2.8900x10^{5} __________
Displacement and Average Velocity
Solve for the unknown information. Show all work and write answer in the blank provided.

1. Heather and Matthew walk with an average velocity of 0.98 m/s eastward. If it takes them 34 min to walk to the store, what is their displacement?

2. If Joe rides his bicycle in a straight line for 15 min with an average velocity of 12.5 km/h south, how far has he ridden?

3. It takes you 9.5 min to walk with an average velocity of 1.2 m/s to the north from the bus stop to the museum entrance. What is your displacement?

4. Simpson drives his car with an average velocity of 48.0 km/h to the east. How long will it take him to drive 144 km on a straight highway?

5. Look back at item 4. How much time would Simpson save by increasing his average velocity to 56.0 km/h to the east?

Instantaneous Velocity and Acceleration
Solve for the unknown information. Show all work and write answer in the blank provided.

1. As the shuttle bus comes to a sudden stop to avoid hitting a dog, it accelerates uniformly at −4.1 m/s² as it slows from 9.0 m/s to 0.0 m/s. Find the time interval of acceleration for the bus.

2. A car traveling at 7.0 m/s accelerates uniformly at 2.5 m/s² to reach a velocity of 12.0 m/s. How long does it take for this acceleration to occur?

3. With an average acceleration of −1.2 m/s², how long will it take a cyclist to bring a bicycle with an initial velocity of 6.5 m/s to a complete stop?

4. Turner’s treadmill runs with a velocity of −1.2 m/s and speeds up at regular intervals during a half-hour workout. After 25 min, the treadmill has a velocity of −6.5 m/s. What is the average acceleration of the treadmill during this period?

5. Suppose a treadmill has an average acceleration of 4.7×10^{-3} m/s². a. How much does its velocity change after 5.0 min? b. If the treadmill’s initial velocity is 1.7 m/s, what will its final velocity be?