At home you will need the Gale database username and password from the library’s Gold Sheet.

Science in Context
Searching Tutorial

The collection includes millions of full-text articles that includes national and global publications as well as 200+ experiments, projects, and top reference content.
Search for "laws of motion" in "GALE IN CONTEXT: Science" database.
Color

The science of color is called chromatics, or color science. Color is the way the brain interprets different wavelengths of electromagnetic radiation as perceived by the eyes, or in other words it's how the brain perceives visible light. When light shines on an object some colors bounce off the object and others are absorbed by it. Our eyes only see the colors that are bounced off or reflected.
Three laws of motion when coupled with Newton’s law of gravity form the basis for explaining both the motions seen on the earth and the motions of the heavenly bodies.

In the sixteenth century, Polish astronomer Nicolaus Copernicus (1473–1543) suggested that Earth and other planets orbited the sun, but his model contained no physics. It did not say why the planets should orbit the sun. Galileo was censured by the Catholic Church and forced to recant his belief in the Copernican model. He then realized that to ultimately win, the Copernican model needed a physical basis. Galileo therefore started to quietly develop the new physics needed to explain planetary motions. Newton, who was born the year Galileo died, built on...
Articles are sorted by Content
You may click on a specific content category, or use the menu at the top.
Tunneling
Author: Brandon Brown
From: The Gale Encyclopedia of Science (5th ed.)
July 19, 2019 3,710 words Topic overview 120 T
Tunneling, also known as the tunnel effect, is a quantum mechanical phenomenon by which a tiny particle can pass through a barrier that it could not, by any classical or obvious means, pass. Though seemingly miraculous, the...

Relativity, general
Authors: Paul A. Heckert and Larry Gilman
From: The Gale Encyclopedia of Science (5th ed.)
July 19, 2019 3,041 words Topic overview 115 T
The theory of relativity was developed by the German physicist Albert Einstein (1879–1955) in the early twentieth century and quickly became one of the basic organizing ideas of physics. Relativity generally consists of...

Laws of motion
Author: Paul A. Heckert
From: The Gale Encyclopedia of Science (5th ed.)
July 19, 2019 870 words Topic overview 965 T
Three laws of motion when coupled with Newton's law of gravity form the basis for explaining both the motions seen on the earth and the motions of the heavenly bodies. In the sixteenth century, Polish astronomer Nicolas...

Turbine
Author: Leonard C. Bruno
From: The Gale Encyclopedia of Science (5th ed.)
Apr. 30, 2019 2,154 words Topic overview 125 T
A turbine is any of various rotary machines that convert the kinetic energy in a stream of fluid (gas or liquid) into mechanical energy by passing the stream through a system of fixed and moving fans or blades. Turbines...
Click on the title to access the article
Read through the article to find a connection to your research before printing!
Science in Context
Printing Tutorial
Three laws of motion when coupled with Newton's law of gravity form the basis for explaining both the motions seen on the earth and the motions of the heavenly bodies.

HISTORY

In the sixteenth century, Polish astronomer Nicolaus Copernicus (1473–1543) suggested that Earth and other planets orbited the sun, but his model contained no physics. It did not say why the planets should orbit the sun. Galileo was censured by the Catholic Church and forced to recant his belief in the Copernican model. He then realized that to ultimately win, the Copernican model needed a physical basis. Galileo therefore started to quietly develop the new physics needed to explain planetary motions. Newton, who was born the year Galileo died, built on the foundation laid by Galileo. The resulting edifice, Newton's laws, was a grand synthesis that for the first time explained motions both on Earth and in the heavens with a unified set of laws.
Laws of motion

Author: Paul A. Hebert
Editors: K. Lee Lerner and Brenda Wilmoth Lerner
Date: July 19, 2019
From: The Gale Encyclopedia of Science (6th ed.)
Publisher: Gale, a Cengage Company
Document Type: Topic overview
Length: 870 words
Content Level: (Level 3)
Lexile Measure: 960L

Full Text:

Nicolau Copernicus (1473–1543) suggested that Earth should orbit the sun, but his model contained no physics. It did not say why the planets should orbit the sun. Galileo was censured by the Catholic Church and forced to recant his belief in the Copernican model. He then realized that to ultimately win, the Copernican model needed a physical basis. Galileo therefore started to quietly develop the new physics needed to explain planetary motions. Newton, who was born the year Galileo died, built on the foundation laid by Galileo. The resulting edifice, Newton's laws, was a grand synthesis that for the first time explained motions both on Earth and in the heavens with a unified set of laws.

Newton's three laws

1. The first of Newton's laws states an object will continue its motion at a constant velocity until an outside force acts on it. The block continues to move as long as one applies a force. When the force stops, the block stops moving. The block will continue to slide for a while after one stops applying a force. The pushing is not the only force acting on the block. There is also a frictional force opposing the motion. The block sliding across the floor stops because the frictional force acts on it. The block on an icy surface takes longer to stop because there is less frictional force. If one could slide the block across a surface with absolutely no friction, it would never stop. The block would keep moving until some outside force, such as the wall of the room, stopped it. A block on a lever surface, without application of force, will not move unless something applies an outside force.

2. The first of Newton's laws states an object will continue its motion at a constant velocity until an outside force acts on it. The block has a tendency to continue in its state of motion, whatever that state might be, until some force changes that state of motion. This tendency to continue in a state of motion is called the object's inertia. An object at rest simply has a constant velocity of zero, and it needs an outside force to start moving. The physicist's definition of velocity includes both speed and direction, so any deviation from straight-line motion is a change in velocity and will require an outside force. The object's inertia causes it to continue to move at a constant (in a straight line) velocity (or stay at rest) until an outside force acts on it.

https://go.gale.com/ps/redirect.do?tabID=Reference&resultType=RESULT_LIST&searchResultsType=SingleTab&searchType=TopicSearchForm¤tPosition=5&docId=GALE%7CCV264403128S&docType=Topi...
Science in Context
Saving to Google Drive Tutorial
Laws of motion

Three laws of motion when coupled with Newton's law of gravity form the basis for explaining both the motions seen on the earth and the motions of the heavenly bodies.

HISTORY

In the sixteenth century, Polish astronomer Nicolaus Copernicus (1473–1543) suggested that Earth and other planets orbited the sun, but his model contained no physics. It did not say why the planets should orbit the sun. Galileo was influenced by the Copernican model but forced to recant his belief in the Copernican model when he was tried by the Catholic Church and had to recant his belief in the Copernican model. He then realized that to ultimately win, the Copernican model needed a physical basis. Galileo therefore started to quietly develop the new physics needed to explain planetary motions. Newton, who was born the year Galileo died, built on the foundation laid by Galileo. The resulting edifice, Newton's laws, was a grand synthesis that for the first time explained motions both on Earth and in the heavens on the unified set of laws.
Enter your @pvbears.org email address
Enter your PV Network Password
The article has now been saved to your drive. Click **Ok**. Then open your **Google Drive** to access the article.